SYNTHESIS OF E- AND Z-ISOMERS OF 3-(α -THIOETHOXYMETHYLENE)OXINDOLE: CHARACTERIZATION AND RELATIVE STABILITY OF THE TWO ISOMERS ¹

Chikara KANEKO, Shinji KAWAI, and Masanori SOMEI Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa 920

The E- and Z-isomers of $3-(\alpha-thioethoxymethylene)$ oxindole have been synthesized for the first time and the verification that the E-isomer is more stable than the Z-isomer is provided experimentally.

Synthesis of α -methylene lactones has received considerable attention recently, because of interest in the anticancer properties of these substances. However, all of the 3-(α -alkoxyalkylidene) oxindoles reported so far have the E-form irrespective to the method of their syntheses. In this paper, we report the synthesis of both E- and Z-isomers of 3-(α -thioethoxymethylene) oxindole and demonstrate that the E-isomer is thermodynamically more stable than the Z-isomer.

Reaction of methyl 2-phenylbenz[d]-1,3-oxazepine 5-carboxylate ($\frac{1}{2}$) with an excess of ethanethiol in THF in the presence of NaH at room temperature afforded stereoselectively the oxindole [$\underline{E}=3$; mp 128-129.5°, λ_{max}^{MeOH} nm (log ξ): 242.5 (4.09), 252 (4.10), 278, sh. (3.87), 284 (3.91), and 331 (4.22)] in 79% yield. Irradiation of $\underline{E}=3$ with \geq 300 nm rays in CDCl₃ in an NMR tube produced a photostationary mixture of this and the other isomer ($\underline{Z}=3$) in a ratio of \underline{ca} . 5:2 (judged from NMR spectroscopy). Chromatography on silica gel afforded the latter in a pure form which was obtained from a slightly less polar fraction than the original E-isomer [$\underline{Z}=3$; mp 126-127.5°, λ_{max}^{MeOH} nm (log ξ): 234.5 (3.82), 255 (3.85), 277 (4.09), 282 (4.11), and 334 (4.25)]. The NMR signals of both isomers are not very different, except for the olefinic protons: $\underline{E}=3$ δ 7.83 (s); $\underline{Z}=3$ δ 7.57 (s). The olefinic proton in the E-isomer would only be deshielded by the carbonyl function, so leading to a resonance at lower field than the Z-isomer.

The configurational assignments of the two isomers were finally confirmed by the stereoselective synthesis of each isomer from $\underline{1}$. Thus, irradiation (≥ 300 nm) of $\underline{1}$ in $\mathrm{CH_2Cl_2}$ in the presence of the thiol, until the consumption of $\underline{1}$ was complete, afforded the ring-opened addition products in 65% yield as a mixture of both Z- and E-isomers of methyl 3-thioethoxy-2-(2-benzamidophenyl)acrylate ($\underline{2}$). Since E-Z isomerization of each addition product was more facile than the photo-addition reaction to $\underline{1}$, the isolation yield of each isomer was the same with the ratio (E:Z; \underline{ca} . 2:1) in their photostationary state. However, by t.l.c. monitoring of the reaction, the Z-isomer is shown to be the primary product. The NMR spectra of both of the isomers distinguished their stereochemistry: the olefinic proton of $\underline{E}=\underline{2}$ (mp 109-111°, δ 8.03) appeared in a lower field than that (the signal was hidden in the ring proton signals: δ 7.1-7.6) of $\underline{Z}=\underline{2}$ (mp 115-117°). Each isomer was then transformed stereoselectively to the corresponding oxindoles ($\underline{E}=\underline{3}$ and $\underline{Z}=\underline{3}$) by treatment with NaH in THF.

MeOOC

$$EtSH$$
 NaH
 NaH
 SEt
 NaH
 SEt
 NaH
 SEt
 NaH
 SEt
 SET

From these observations, it became clear that the initial addition of the thiol to $\underline{\underline{1}}$ under thermal conditions occurred stereoselectively to give $\underline{\underline{E}}=\underline{\underline{2}}^6$, which under these conditions was transformed to $\underline{\underline{E}}=\underline{\underline{3}}$, while the photo-addition of the thiol to $\underline{\underline{1}}$ took the reverse stereochemical course. These results are in parallel with those obtained in the related alcohol addition reactions to $\underline{\underline{1}}$ reported previously. 7

A very important observation has been gained when we treat these two isomers $(\underline{\underline{E}}\underline{-3} \text{ and } \underline{\underline{Z}}\underline{-3})$ with 10% HCl in methanol. Thus, while the E-isomer was found to be stable, the Z-isomer was transformed quantitatively to the E-isomer (60°, 15 min).

The results demonstrate that the E-isomer ($\underline{\underline{E}}$) is thermodynamically more stable than the Z-isomer ($\underline{\underline{Z}}$) and support the conclusion that non-existence of the Z-isomer in the corresponding alkoxymethylene derivatives may be due to an intrinsic instability of that isomer under an ordinary condition as suggested in the previous paper. 1

Acknowledgement. The authors thank the Ministry of Education, Japan, for Grant-in-Aid for Special Project Research: Chemical Research in Development and Utilization of Nitrogen-Organic Resources.

References and Notes

- Part VI of "Studies on the Oxazepine Derivatives." Part V: C. Kaneko, H. Fujii,
 S. Kawai, and M. Somei, Chem. Lett., preceding communication.
- 2) S. M. Kupchan, D. C. Fessler, M. A. Eakin, and T. J. Giacobbe, Science, <u>168</u>, 376 (1970).
- 3) See ref. 1 and the cited papers therein.
- 4) R. Kitamura, H. Fujii, K. Hashiba, M. Somei, and C. Kaneko, Tetrahedron Lett.,
- 5) All of the NMR spectra were measured in CDCl₃.
- 6) The reaction of <u>l</u> with the thiol in ether in the presence of triethylamine resulted in an entire recovery of the starting material and none of the ring opened addition product (<u>2</u>) was obtained.
- 7) M. Somei, R. Kitamura, H. Fujii, K. Hashiba, S. Kawai, and C. Kaneko, Chem. Commun., <u>1977</u>, 899.